JPAIR Multidisciplinary Research Volume 62 ¢ October 2025
Check for

updates DOI: https://doi.org/10.7719/jpair.v62i1.959

Data Analytics and Machine Learning

Applications for Remote Management

Systems (RMS) In Telecommunications
Infrastructure

JOHN PAOLO YU' ', SAMSON G. MELITANTE' —,
MAYLEN G. EROA!
'Batangas State University - The National Engineering University,
Batangas City, Philippines

Corresponding author: jaypee.yu.047 @gmail.com

Originality 100% ¢ Grammar Check: 95% ¢ Plagiarism: 0%

ABSTRACT
) . N This paper presents a data-driven framework
Article History designed to enhance Remote Management
Received: 02 Mar 2025 Systems  (RMS) in  telecommunications
Revised: 11 Jul 2025 infrastructure  through the application of
Accepted: 21 Sept 2025 data analytics and machine learning (ML)
Published: 31 Oct 2025 techniques. The proposed solution does not

require additional hardware; instead, it utilizes

Keywords— Anomaly existing RMS data streams and applies advanced

detection, data analytics,

1SO 25010, machine processing algorithms to address key challenges
learning, remote management | in anomaly detection and root cause analysis.
systems, root cause analysis, The framework was deployed and Validated
system quality evaluation, across 1,004 telecom sites, resulting in significant
telecommunications

Y, operational improvements: a 40% reduction in
mean time to repair (MTTR), a 25% decrease
in maintenance costs, and enhanced network reliabilicy with 99.98% system

© Yu, J.P, Melitante, S.G., & Eroa, M.G. (2025). Open Access. This article published by
JPAIR Multidisciplinary Research is licensed under a Creative  Commons Attribution-

Noncommercial 4.0 International (CC BY-NC 4.0). You are free to share (copy and
redistribute the material in any medium or format) and adapt (remix, transform, and build upon the material). Under
the following terms, you must give appropriate credit, provide a link to the license, and indicate if changes were made.
You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You
may not use the material for commercial purposes. To view a copy of this license, visit: https://creativecommons.org/
licenses/by-nc/4.0/

\ infrastructure

93


http://orcid.org/0000-0001-2345-6789
http://orcid.org/0000-0002-3456-7890
http://orcid.org/0009-0009-7756-2865
mailto:john.paolo.yu@gmail.com
https://creativecommons.org/licenses/by-nc/4.0/

https://creativecommons.org/licenses/by-nc/4.0/

https://crossmark.crossref.org/dialog/?10.7719/jpair.v61i2.959&philair.ph=pdf&date_stamp=2025-10-31

International Peer Reviewed Journal

availability. The anomaly detection module demonstrated 85% accuracy in
identifying abnormal air conditioning unit (ACU) cycling patterns, with a 76%
reduction in false alarms. Using a hybrid ML approach that combines supervised
learning, unsupervised clustering, and correlation analysis, the system accurately
detects complex operational issues such as abnormal cycle speeds and irregular
fuel consumption. Additionally, it effectively identifies and corrects anomalies
related to critical remote terminal (CRT) faults, including DC mains failures.
Historical incident data is leveraged to support pattern recognition for accurate
root cause analysis, achieving 83.3% accuracy. The framework also aligns with
sustainability goals and adheres to ISO 25010 standards for system quality
evaluation, offering both operational and environmental benefits.

INTRODUCTION

The global telecommunications industry is undergoing an unprecedented
transformation, driven by the rapid acceleration of digitalization across sectors,
the ubiquity of Internet-of-Things (IoT) devices, and the surging demand
for high-speed, uninterrupted connectivity. With an estimated 29.3 billion
networked devices expected by 2023 (Cisco, 2020), service providers are under
immense pressure to maintain infrastructure that is both scalable and resilient.
As networks evolve to include edge computing, cloud-native architectures, and
5G/6G capabilities, their complexity increases exponentially posing significant
challenges in maintaining consistent performance and reliability. Traditional
maintenance and monitoring practices, often reliant on scheduled checks
and threshold-based alarms, are increasingly inadequate in identifying and
responding to faults in real-time (Minilec Group, 2024). In this context, Remote
Management Systems (RMS) have become indispensable tools for managing
distributed infrastructure. They enable real-time monitoring, alerting, and
limited automation in operational workflows (Yang et al., 2019). However, many
of these systems remain fundamentally reactive, relying heavily on predefined
parameters and manual analysis, which limits their responsiveness to emerging
anomalies and hinders timely root cause identification. The growing adoption of
data analytics and machine learning (ML) within RMS is seen as a transformative
shift—enabling predictive maintenance, intelligent fault detection, and dynamic
decision-making that collectively reduce downtime and enhance system reliability
(Gupta & Sharma, 2020).

In Southeast Asia—particularly in the Philippines—the operational
challenges are amplified by geographic, environmental, and infrastructural
factors. The nation’s archipelagic landscape, comprising over 7,000 islands, poses
substantial logistical hurdles in deploying and maintaining telecommunications
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infrastructure. Remote telecom sites are often inaccessible by road and are
frequently impacted by adverse weather conditions, including typhoons, monsoon
flooding, and high humidity, which can accelerate equipment wear and complicate
emergency response (Salac etal., 2024). These conditions elevate operational risks
and costs, especially in the absence of intelligent, automated systems. Although
RMS technologies are being increasingly deployed, most implementations are
limited to basic telemetry and alarm functions without advanced analytics
capabilities. As a result, telecom operators experience prolonged mean times to
repair (MTTR), inefficient resource allocation, and suboptimal service availability
(Schwarz, 2024). Compounding these issues is the heterogeneity of hardware
vendors and legacy platforms, which creates integration challenges and limits the
scalability of existing RMS tools. Despite regional initiatives such as the ASEAN
ICT Masterplan 2020, which promotes digital transformation and infrastructure
modernization, practical implementation often lags due to budgetary, technical,
and regulatory constraints. These challenges underscore the critical need for
innovative, scalable, and intelligent solutions tailored to the region’s specific
infrastructure and environmental realities.

A review of current literature reveals a considerable research gap in
developing cost-effective, Al-driven RMS solutions that can be deployed using
existing infrastructure without the need for substantial hardware investment.
Most existing studies in the field have focused on component-level anomaly
detection or speciﬁc use cases, such as temperature control in base stations or
fuel consumption monitoring (Panza et al., 2023). Few have adopted a holistic
approach that leverages real-time RMS data streams to enable end-to-end
monitoring, diagnosis, and optimization. Moreover, while some research has
explored either supervised or unsupervised learning models in isolation, there
is limited empirical work combining both paradigms into a hybrid system
capable of handling complex, multidimensional operational patterns. This lack
of comprehensive, integrative frameworks limits the ability of telecom operators
to make data-driven decisions in dynamic field environments. Addressing this
gap, the present study proposes a novel hybrid machine learning framework
that integrates supervised classification, unsupervised clustering, and correlation
analysis to enhance fault detection and root cause analysis in RMS. The proposed
solution capitalizes on existing telemetry data from telecom sites, aiming to reduce
operational downtime, maintenance costs, and energy usage while advancing
both environmental sustainability and service reliability.
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FRAMEWORK

Figure 1
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The conceptual framework for this research revolves around the systematic
flow and integration of data analytics within a Remote Management System
(RMS) designed for telecommunications infrastructure. As illustrated in Figure 2,
the framework demonstrates how artificial intelligence (Al) and machine learning
(ML) technologies are embedded into the architecture to address key challenges
such as anomaly detection and root cause analysis—areas where traditional
systems often fall short. The design is structured around five interconnected
components, each contributing a vital function to form an end-to-end intelligent
management solution.

The first component, Data Sources, encompasses a wide array of inputs
crucial for comprehensive monitoring. These include telemetry from telecom
infrastructure components, environmental and operational parameters captured
by IoT sensors, records of past maintenance activities, and real-time network
traffic and performance metrics. The inclusion of diverse data types enables the
creation of operational baselines and supports the identification of patterns that
may otherwise go unnoticed, offering a more nuanced understanding of system
behavior.

The second component, Real-Time Data Collection, ensures that data
from multiple sources is aggregated, centralized, and archived in a cloud-based
environment. This setup allows for both real-time and historical analysis, solving
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issues related to data heterogeneity and format inconsistency. It guarantees that
the collected data is consistently available for immediate diagnostic purposes and
long-term strategic planning, thereby enhancing the reliability of monitoring
activities.

The third component, Real-Time Data Preprocessing, represents the
analytical core of the framework. Here, Al and ML models operate to detect
anomalies by analyzing patterns and correlations across various data points. A
specialized ML model pinpoints specific inconsistencies such as temperature
variations related to air conditioning units or discrepancies between generator
fuel levels and energy output. A hybrid prediction model combines data-driven
analytics with physics-based simulations to reflect real-world equipment behavior
more accurately. Additionally, an advanced analytics model compares new
anomalies with historical incidents to identify the most probable root causes,
streamlining the decision-making process.

The fourth component, Remote Monitoring and Visualization, translates
complex analytical findings into actionable insights through an intuitive
graphical user interface (GUI). This interface displays detected anomalies, their
severity, potential causes, and historical data comparisons. Users can engage in
drill-down analysis for deeper exploration, which empowers technical teams to
make informed decisions quickly and effectively. This layer is critical in ensuring
that the system’s advanced capabilities are accessible and usable for everyday
operations.

The fifth and final component, Professional Decision Making, underscores
the importance of human expertise in interpreting data and implementing
corrective actions. Rather than making autonomous decisions, the system
provides recommendations supported by evidence and historical context. It also
adapts to user feedback and operational preferences, fostering a dynamic learning
environment within the system itself. This “human-in-the-loop” approach
ensures that technology complements rather than replaces human judgment,
which is essential for the successful adoption and integration of such systems
within organizational structures.

Opverall, this conceptual framework serves as a blueprint for an intelligent,
scalable, and user-oriented Remote Management System for telecommunications.
It not only enhances operational efficiency and incident response but also builds
the foundation for sustainable digital transformation through advanced analytics
and Al integration.
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OBJECTIVES OF THE STUDY

This study aimed to develop a machine learning framework that enhances
existing Remote Management Systems (RMS) in telecommunications
infrastructure without the need for new hardware deployment. The primary
objective is to build an advanced anomaly detection system capable of analyzing
patterns in air conditioning unit (ACU) behavior, fuel consumption, power
efficiency, and backup system performance to detect operational issues early and
minimize false alarms. Additionally, the study seeks to create an intelligent root
cause analysis system that utilizes historical incident data to suggest probable
causes for detected anomalies, thereby improving repair times and enhancing the
accuracy of escalation processes. Finally, the research includes an evaluation of
the system based on the ISO/IEC 25010 standards, focusing on aspects such as
system quality, usability, and performance, to ensure the solution aligns with the
operational requirements of modern telecommunications environments.

METHODOLOGY

This research employed a systematic approach to designing and implementing
a data analytics and machine learning framework specifically targeting the
limitations in anomaly detection and root cause analysis found in current RMS
platforms. This methodology combined theoretical development with practical
implementation to ensure both academic rigor and real-world applicability.

Research Design Process
Data Analytics and machine Learning Applications for Remote Management
Systems

Figure 2
Research Design Process Flow Chart

Problem Identification
RMS Limitations Analysis

Prototype
Communication

Implementation
Telecom Sites
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This research utilized design science research methodology, which focused
on creating and evaluating innovative solutions to complex organizational
problems. This methodological approach involved six sequential phases: problem
identification and motivation through extensive literature review and industry
consultation to identify specific limitations in current RMS platforms; solution
objectives definition based on identified gaps, establishing clear objectives and
performance targets for our framework; design and development of specific
components addressing the identified limitations; prototype implementation
across selected telecommunications sites as a functional prototype; evaluation
through comprehensive testing using real-world telecommunications data;
and communication and refinement where results were documented and the
framework continuously refined based on performance feedback.

Implementation Framework

The implementation focused on creating processing layers integrated with
existing RMS data streams. The data integration layer included connectors to
existing RMS databases and feeds, data standardization and quality validation
algorithms, historical data processing for pattern establishment, and time-series
data aggregation and normalization. The Al processing engine incorporated
machine learning pipelines for anomaly detection, pattern recognition algorithms
for identifying complex correlations, knowledge base development for root
cause analysis, and continuous learning mechanisms for model refinement. The
visualization and reporting layer featured dashboard interfaces for displaying
processed insights, alert generation based on detected anomalies, recommendation
systems for troubleshooting guidance, and tools for performance reporting and
trend analysis.

Data collection followed a structured protocol to ensure consistency, with
automated quality validation algorithms used to detect and flag potential
anomalies or inconsistencies for manual verification. Data analysis employed
multiple statistical and machine learning techniques, including descriptive
statistics to establish baseline performance metrics and normal operational
ranges. Machine learning models such as ensemble methods—including Random
Forest, Gradient Boosting, and Support Vector Machines—were utilized for
anomaly detection (achieving 85% accuracy). Pattern recognition algorithms,
including K-nearest neighbors and case-based reasoning, were applied for
root cause identification (achieving 83% accuracy). Correlation analysis using
Pearson and Spearman coeflicients identified relationships between operational
parameters. Significance testing through paired t-tests compared pre- and post-
implementation performance metrics, while economic analysis included ROI
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calculations and operational cost modeling. These techniques were selected for
their suitability to telecommunications operational data and were implemented
using Python’s scientific libraries (NumPy, SciPy, Pandas) and specialized machine
learning frameworks.

Overview of Architecture and Model Pipeline

The Remote Management System (RMS) integrates a comprehensive suite
of data analytics and machine learning techniques to facilitate the autonomous
management of telecommunications infrastructure. The system is engineered to
proactively detect anomalous behavior, identify root causes of faults, and validate
diagnostic outputs to ensure reliability and trustworthiness. The RMS pipeline
encompasses multiple layers, starting with the ingestion of real-time telemetry
data and SNMP (Simple Network Management Protocol) logs from network
devices. These inputs are essential for monitoring parameters such as bandwidth
usage, signal degradation, CPU/memory utilization, and environmental metrics
(e.g., temperature, humidity).

Once data is collected, it undergoes preprocessing, which includes noise
filtering, data normalization, and time-series decomposition. This stage is critical
for standardizing input features and enhancing the accuracy of downstream
machine learning models. Following preprocessing, the data is passed to the
machine learning engine for anomaly detection, where the system identifies
patterns deviating from normal behavior. These anomalies are then subjected
to a root-cause analysis layer using pattern recognition techniques. To support
interpretability and decision-making, an integrated knowledge base of historical
faultcases and expert-curated rules is consulted. Finally, quality validation modules
ensure that only high-confidence insights are presented to end-users through a
centralized RMS dashboard. This dashboard enables network administrators
to visualize alerts, recommended resolutions, and historical trends. A system
architecture diagram (Figure 1) illustrates the interaction between these layers,
including data flows from edge devices to cloud-based analytics and visualization
modules.

Machine Learning Design for Anomaly Detection

Anomaly detection within telecommunications networks is a critical
capability that ensures early identification of service degradation, equipment
failure, or potential security breaches. In this study, supervised learning models
were selected due to the availability of labeled datasets. Specifically, Random
Forest (RF), Gradient Boosting (GB), and Support Vector Machines (SVM) were
chosen for their proven effectiveness in classification problems, especially under
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high-dimensional conditions.

The dataset used for model training and evaluation is defined as, where
each input vector represents a set of measured network features (e.g., RSSI,
throughput, packet loss rate), and denotes whether the instance is normal (0) or
anomalous (1). Preprocessing is essential for ensuring data quality. Missing values
are handled using statistical imputation techniques such as mean substitution
and k-nearest neighbor (k-NN) averaging. Oudlier removal is implemented
using Z-score thresholding and interquartile range filtering. The feature set is
then normalized using Min-Max scaling to bring all variables into the range
[0, 1]. Additionally, categorical variables (e.g., equipment type, alarm category)
are encoded into numerical form using one-hot encoding or ordinal encoding
schemes. Temporal features are engineered to represent past behavior, using
methods such as lag variables, moving averages, and windowed aggregates.

Three machine learning algorithms are applied independently to assess their
anomaly detection capabilities. Random Forest constructs an ensemble of decision
trees using bootstrap aggregation. Each tree votes on the class of an instance, and
the final prediction is the majority vote. One key advantage of RF is its ability
to assess feature importance using metrics like Gini impurity reduction, which
aids in understanding the primary contributors to network anomalies. Gradient
Boosting, in contrast, builds trees sequentially, with each tree attempting to
minimize the residual error of the previous ensemble using gradient descent. It is
optimized using binary cross-entropy loss and a regularization strategy to prevent
overfitting. Support Vector Machines aim to identify the optimal hyperplane that
maximizes the margin between the two classes in the dataset. Both linear and
radial basis function (RBF) kernels are evaluated. Since real-world data is often
imbalanced (i.e., fewer anomalies than normal cases), the dataset is balanced
using Synthetic Minority Over-sampling Technique (SMOTE), and cost-
sensitive learning is employed to penalize misclassification of minority instances.

Model performance is evaluated using 5-fold stratified cross-validation to
preserve the proportion of classes in each fold. Metrics such as precision, recall,
F1-score, and the area under the ROC curve (AUC-ROC) are computed. Among
the three models, Random Forest achieves the best overall performance, with an
Fl-score of 0.93 and robust generalization across validation sets. Consequently,
RF is selected as the primary anomaly detection model for deployment in the
production RMS environment.

Pattern Recognition for Root-Cause Analysis

After an anomaly is detected, determining its root cause is essential for
initiating corrective action. The RMS employs two primary techniques for root-
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cause analysis: K-Nearest Neighbors (KNN) and Case-Based Reasoning (CBR).
KNN is a non-parametric method that identifies historical data points most
similar to the current anomaly. For a given test instance, the Euclidean distance is
calculated against all training instances. The k closest samples, are selected. These
neighbors serve as a reference group whose labelled root causes are aggregated,
either through simple majority voting or a distance-weighted scheme. This allows
the system to infer probable causes based on known behavior, assuming that
similar input patterns likely stem from similar faults. Additionally, KNN helps
localize the features most responsible for the anomaly by analyzing variance
within the neighborhood.

Case-Based Reasoning extends this logic by referencing a curated database of
previous cases, denoted as, where is the observed data, is the diagnosed cause, and
is the resolution applied. When an anomaly is detected, cosine similarity is used
to match the new case with existing ones in the database. The most similar cases
are retrieved, and their associated causes and resolutions are recommended to
the operator. The confidence level of each recommendation is determined by the
degree of similarity. CBR adds significant value to the RMS by mimicking human
reasoning and offering traceable, case-based justifications for the recommended
response.

Knowledge Base Construction and Usage

The knowledge base (KB) serves as the backbone of expert-guided decision-
making within the RMS. It stores not only empirical data from past network
incidents but also rules derived from domain expertise. The KB comprises fault
signatures—specific patterns in telemetry data that indicate known issues; causal
mappings, which translate conditions into likely causes and corresponding
corrective actions; and resolution records that document how each issue was
resolved and the success rate of interventions.

The rules in the knowledge base are encoded using JSON and evaluated by
a rule engine such as Drools. For example, a rule might state that if the RSSI is
below -100 dBm and there is a voltage drop recorded at the power input node,
then the root cause is likely a power supply failure. The recommended action in
this case would be to inspect and replace the site’s UPS battery. During real-time
operation, the RMS continuously evaluates these rules in parallel with machine
learning predictions. When a rule condition is met, its conclusion is logged
and presented in the dashboard alongside model-generated insights. This dual
system ensures that even if the machine learning model fails to recognize a new
or ambiguous pattern, the KB can still provide actionable guidance.
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Quality Validation Algorithms

To reinforce the credibility of the RMS outputs, a layered validation
framework is employed. The first layer involves ensemble consistency scoring.
Predictions from the RE, GB, and SVM models are aggregated, and a consensus
score is calculated based on how many models agree thatan instance is anomalous.
If this score exceeds a predefined threshold, the system considers the anomaly to
be high-confidence and passes it on for root-cause analysis.

Further validation is achieved using evaluation metrics on a dedicated hold-
out test set. These include ROC-AUC, which quantifies the trade-off between
true positive and false positive rates, and PR-AUC, which is more informative
in cases of class imbalance. Additionally, confusion matrices are generated to
visualize performance across all classes, allowing the research team to identify
areas where the model might underperform.

To promote interpretability, SHAP values are calculated for each anomaly
instance. These values explain the contribution of each feature to the final
prediction, thereby making the model’s decision transparent to network
operators. For example, if an anomaly is flagged due to high packet loss and low
RSSI, SHAP values will indicate the exact influence of these features, enabling
engineers to validate whether the model’s reasoning aligns with their domain
knowledge.

Data Collection and Analysis

The research incorporated operational data from 1,004 telecommunications
sites representing diverse environments (urban, suburban, and rural) and varying
equipment configurations. Primary data sources included real-time telemetry
data (power, temperature, humidity), historical operational logs for ACUs and
power systems, incident records with documented root causes (3,270 records),
fuel consumption and generator runtime logs (covering 24 months of historical
data), PUE measurements and sensor deployment records, AC mains failure
incidents and corresponding system responses, as well as maintenance records
and technical visit reports (4,580 records).

To complement the primary data and establish theoretical foundations,
the study utilized secondary data sources, including industry standards and
technical specifications, equipment manufacturer guidelines, academic literature
on anomaly detection and root cause analysis, and case studies from the
telecommunications industry. Moreover, it employed a multi-method analytical
approach, incorporating statistical analysis to establish baseline performance
metrics and normal operational ranges, machine learning model development to
create specialized models for enhanced RMS data processing, comparative analysis
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to evaluate performance against conventional RMS approaches, and stakeholder
assessment to gather qualitative feedback through structured interviews with
operations personnel.

Statistical Techniques

Data analysis employed a variety of statistical and machine learning techniques
to thoroughly evaluate the system. Descriptive statistics were used to establish
baseline performance metrics and define normal operational ranges. Ensemble
machine learning models, including Random Forest, Gradient Boosting, and
Support Vector Machines, were applied for anomaly detection, achieving an
accuracy of 85%. Pattern recognition algorithms, such as K-nearest neighbors
and case-based reasoning, were utilized for root cause identification, with an
accuracy of 83%. Correlation analysis, using Pearson and Spearman coefficients,
identified relationships between various operational parameters. Significance
testing through paired t-tests was conducted to compare performance metrics
before and after implementation. Additionally, economic analysis involved
return on investment (ROI) calculations and operational cost modeling to assess
the financial impact. These techniques were carefully selected for their relevance
to telecommunications operational data and were implemented using Python’s
scientific libraries, including NumPy, SciPy, and Pandas, along with specialized
machine learning frameworks.

RESULTS AND DISCUSSION

1. System Implementation and Performance Metrics

The full-scale deployment of the proposed Remote Management System
(RMS) framework across 1,004 telecommunications sites provided concrete
evidence of its efficacy and adaptability under real-world conditions. The
framework was structured into three primary architectural layers, namely: the
Edge Layer, the Core Processing Layer, and the Presentation Layer. The Edge
Layer was responsible for local data ingestion and lightweight anomaly detection
using pre-trained machine learning models. By pre-filtering and tagging data
near the source, latency was reduced, and immediate alerts could be generated
without the need to transmit large volumes of raw telemetry to central servers.

The Core Processing Layer, hosted on scalable cloud infrastructure, centralized
data from all sites and ran comprehensive analytics workflows, including
advanced pattern recognition, temporal analysis, and predictive modeling. This
layer housed the most computationally intensive components, including LSTM
networks for time-series analysis and ensemble models for anomaly classification.
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The Presentation Layer, built using Microsoft Power BI, presented operational
insights through interactive dashboards tailored to different user roles—network
administrators, field engineers, and executive decision-makers. These dashboards
enhanced situational awareness and enabled stakeholders to make data-driven
decisions in real-time.

Following implementation, several key performance indicators (KPIs)
showed substantial improvements. Mean Time to Repair (MTTR) decreased
from 4.0 hours to 2.5 hours, a 40% improvement. This outcome aligns with
the findings of Garcia-Torres et al. (2022), who reported that machine learning—
based fault localization could reduce MTTR by 35-50% in telecommunications
systems. Similarly, Stephen and Sheriffdeen (2022) found that Al-enabled
diagnostics in industrial IoT reduced MTTR through preemptive detection of
cascading failures. The shorter MTTR was attributed to the system’s automated
root cause analysis engine, which quickly identified anomalies and traced fault
origins without requiring manual diagnostics.

In addition, annual maintenance costs per site decreased from $4,250 to
$3,188, representing a 25% reduction. This cost efficiency supports conclusions
by Mobley (2002), who emphasized that predictive maintenance strategies could
reduce maintenance expenses by up to 30% through early fault identification
and optimized scheduling. Olaoluwa and Potter (2024), further emphasized the
importance of integrating analytics with maintenance planning, highlighting
that such integration leads to better resource allocation and cost predictability
in critical infrastructure sectors. Moreover, the platform’s ability to minimize
unnecessary dispatches of technicians directly contributed to this cost reduction.

The system also yielded a significant reduction in false alarm rates, dropping
from 35% to 8.6% (a 76% reduction). This result validates prior studies by Wang
et al. (2019) who demonstrated that hybrid classification models integrating
anomaly detection and context-aware filtering could eliminate non-critical alerts
by up to 80%. Cinar et al. (2020) similarly reported that machine learning—
driven predictive maintenance systems help distinguish genuine issues from
benign signal deviations, thereby reducing operator fatigue and optimizing
technician workloads. The reduction in false alarms also minimized unnecessary
maintenance actions and preserved system uptime.

Furthermore, theaverage resolution time for incidents dropped from 5.8 hours
to 3.4 hours—a 42% improvement. This mirrors findings by Kwon et al. (2019),
who showed that real-time anomaly detection using edge computing frameworks
could accelerate fault isolation and resolution by integrating immediate on-site
intelligence with centralized analytics. The decrease in resolution time was also
attributed to the Root Cause Analysis Center, which provided historical data
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correlations, eliminating guesswork during incident response.

Figure 3
Management Dashboard
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To facilitate operational intelligence and enhance decision-making, the
framework introduced an integrated Energy Management Dashboard (Figure 3)
built on Power BI. The dashboard comprised four views: a System Overview for
high-level monitoring, an Anomaly Detection View for real-time alert analysis,
a Root Cause Analysis Center for tracing error chains, and a Site-Specific Detail
View for localized diagnostics. This modular dashboard enabled dynamic
visualization of critical metrics, significantly enhancing user interaction and
comprehension.

The value of this visual intelligence layer was evident from a user survey
conducted post-deployment, where 87% of operations personnel reported
enhanced situational awareness and faster incident response. This is consistent
with Alahakoon and Yu (2016), who emphasized the role of data visualization in
reducing cognitive overload and improving comprehension in smart grid systems.
Zhang et al. (n.d.) also found that interactive dashboards are useful tools that let
officials and municipal planners work with and evaluate data in real time. These
dashboards improve strategic planning efforts by enabling decision-makers to
display intricate datasets in an understandable and useful way.
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Collectively, these improvements underscore the transformative potential
of integrating advanced data analytics and machine learning into existing
Remote Management Systems. The observed outcomes—reduced repair times,
lower maintenance costs, improved availability, fewer false alarms, and quicker
resolutions—are strongly supported by established research across industrial
engineering, telecommunications, and smart system design.

Anomaly Detection Performance

The anomaly detection subsystem exhibited robust performance, particularly
in identifying both sudden and gradual deviations in telemetry. The framework
achieved an overall accuracy rate of 85% across all monitored parameters, with
a false positive rate held at just 8.6%. The Random Forest model was the best-
performing algorithm, achieving an Fl-score of 0.93, validating its ability to
balance sensitivity and specificity in imbalanced datasets. The use of Fl-score
as a primary metric ensured that the model was evaluated on its capability to
minimize both false positives and false negatives, a critical requirement in systems
where both types of errors incur operational costs.

The Fl-score was chosen over simple accuracy because the dataset used for
training and validation had class imbalance—anomalous cases were significantly
rarer than normal operational data. In such scenarios, accuracy can be misleading,
as a model predicting all cases as normal may still achieve high accuracy without
detecting true anomalies. The F1-score, which harmonizes precision and recall,
provides a more nuanced view of performance, especially in critical applications
where undetected faults can lead to major operational disruptions.

Notably, the Long Short-Term Memory (LSTM) network added a critical
temporal dimension to anomaly detection. Its ability to track evolving trends
over time was particularly beneficial for diagnosing anomalies in cooling and
power systems, which often exhibit cumulative degradation rather than abrupt
failure. For instance, the LSTM detected anomalous patterns in ACU runtimes
that gradually increased due to thermal inefficiencies, flagging issues even
before hard thresholds were crossed. This proactive capability allowed for timely
intervention, reducing equipment stress and preventing costly downtime.

The system’s multi-parameter analysis engine significantly enhanced fault
detection capabilities. In ACU monitoring, the model correlated internal
run-time parameters with external temperature and humidity data to identify
inefficiencies. This led to a 32% reduction in unnecessary replacements. Similarly,
the generator module flagged discrepancies between fuel consumption and power
output, accurately detecting fuel theft or leakage in 89% of flagged cases. These
capabilities significantly improved trust in anomaly alerts, providing operators
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with context-rich alerts instead of binary warnings.

In addition, the Power Usage Effectiveness (PUE) anomaly detection features
successfully identified sites with inefficiencies due to cooling misconfigurations or
faulty sensors. The framework triggered corrective actions, such as reinstallation
of environmental sensors or equipment recalibration, which led to a 22%
average improvement in site-level PUE. These outcomes align with Hosamo and
Mazzetto (2025), who emphasized the importance of anomaly detection systems
in enabling energy optimization in distributed infrastructure. Improved energy
metrics directly supported organizational sustainability goals and reduced carbon

emissions.
Figure 4
Site Anomalies Dashboard based on Power Performance Indicators
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The system’s multi-parameter correlation engine played a critical role in
identifying anomalies not detectable by conventional univariate approaches. One
notable example was in Air Conditioning Unit (ACU) monitoring, where the
framework cross-referenced runtime metrics with environmental temperature
readings to uncover inconsistencies in 87% of evaluated cases. Specifically, it
identified excessive runtimes and improper cycling behavior that are typically
symptomatic of system inefficiencies or environmental sensor misconfigurations.
This advanced detection capability led to a 32% reduction in unnecessary ACU
replacements, translating to both reduced downtime and significant cost savings.
These findings reinforce the conclusions of Xue et al. (2020), who emphasized that
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anomaly detection techniques that incorporate equipment-specific operational
profiles can significantly reduce false maintenance triggers and improve asset
utilization. Additionally, Wang et al. (2024) highlighted that cross-domain data
fusion in HVAC monitoring improves fault detection sensitivity, especially in
noisy or sensor-sparse environments—a design principle echoed in this study’s
correlation layer.

In a parallel application, the generator-fuel consumption correlation module
demonstrated its effectiveness in identifying fuel-related anomalies with an
accuracy of 89%, flagging irregular consumption patterns that were indicative of
fuel theft or leakage. The system achieved an average detection time of 6.4 hours,
a critical advancement compared to traditional log-based inspection systems that
may take days to flag discrepancies. This capability aligns with the findings of Wang
et al. (2019), who reported that anomaly detection systems utilizing real-time
fuel consumption analysis could reduce unnecessary site visits and operational
response time for power-related issues by 60—70%. Their research highlighted
the effectiveness of combining telemetry data with predictive analytics to identify
and prevent unauthorized resource usage, especially in remote or unmanned
locations.

Another key function of the framework was its Power Usage Effectiveness
(PUE) anomaly detection component, which was designed to monitor energy
efficiency across telecom sites. The system flagged PUE values exceeding 2.0
and successfully correlated these anomalies with root causes such as missing
environmental sensors or suboptimal cooling configurations. In 76% of high-
PUE cases, the system identified missing or misconfigured sensor installations
as the primary contributing factor. Based on these insights, prioritized
sensor deployment recommendations were issued, leading to a 22% average
improvement in PUE across affected sites. This result echoes the conclusions of
pbctoday (2025), who demonstrated that IoT ecosystem network diagnostics can
significantly optimize energy performance and enable a dynamic understanding of
the building’s environment. Likewise, Hosamo and Mazzetto (2025) emphasized
the importance of energy-aware monitoring systems in telecom infrastructure,
showing that smart anomaly detection frameworks can serve as early-warning
systems for deteriorating energy efficiency.

These integrated results collectively validate the utility of context-aware
and multi-metric anomaly detection models in large-scale remote management
applications. Unlike traditional RMS platforms that operate in a reactive and
often siloed manner, the presented system demonstrates how multi-dimensional
analysis, when coupled with machine learning, can proactively surface operational
inefficiencies, reduce resource wastage, and enhance overall system resilience.
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By embedding these anomaly detection capabilities directly into the RMS
architecture, the framework effectively bridges the gap between raw telemetry
data and actionable operational intelligence.

2. Root Cause Analysis Performance

The Root Cause Analysis (RCA) module embedded in the enhanced RMS
framework significantly advanced the system’s troubleshooting capabilities by
enabling rapid, accurate diagnosis of operational anomalies. Across all evaluated
incidents, the system achieved an 83% accuracy rate in correctly identifying
probable causes of faults and performance irregularities. This performance not
only surpasses the 67% accuracy rate reported by Wang et al. (2017) for Bayesian
Network models applied in telecom fault diagnostics but also closely approaches
the 79% accuracy achieved by Rodriguez et al. (2023) in diagnosing anomalies in
complex server infrastructures using case-based reasoning (CBR). The improved
performance of the present system can be attributed to its integration of both
statistical inference and semantic pattern recognition, which enables it to reason
through complex interdependencies within muld-layered telemetry data—a
limitation frequently cited in traditional diagnostic models (Parthasarathy et al.,
2023).

One of the key strengths of the system lies in its historical pattern matching
capabilities, which allowed it to correlate current anomalies with previously
recorded incidents across 1004 sites. In 76% of analyzed cases, the framework
successfully identified recurring patterns tied to specific equipment models,
firmware versions, and environmental configurations. This functionality
significantly enhanced diagnostic precision and reduced the need for redundant
manual investigation. The average diagnostic time was reduced by 57%, a result
that mirrors the outcomes of Sharma et al. (2022), who reported that automated
root cause identification using pattern recognition algorithms could reduce fault
isolation times by 50-65% in telecom environments. Moreover, Jiang and Luo
(2019) demonstrated that pattern-driven RCA frameworks, when applied across
distributed site architectures, substantially outperform manual troubleshooting
workflows in environments with high configuration diversity—an observation
that reinforces the value of historical learning within intelligent RMS platforms.

Additionally, the deployment of a standardized issue categorization protocol
across the system dramatically improved communication clarity during incident
escalation. Specifically, the system reduced language ambiguity by 64%, resulting
in more precise and actionable escalation tickets. Furthermore, the frequency of
unnecessary escalations dropped by 52%, due to the automation of preliminary
diagnostics and issue classification at the site level. These improvements led to
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a 38% reduction in average escalation resolution time, validating the approach
advocated by Ahmed et al. (2022), who emphasized the impact of structured
incident taxonomies on operational efficiency in network management systems.
Their study found that standardized categorization practices reduced resolution
times by 30-45%, especially when combined with automated case referencing
and tiered resolution strategies.

Collectively, these findings underscore the substantial operational gains
achievable through intelligent, integrated root cause analysis within RMS
ecosystems. By coupling pattern-based learning with structured issue classification
and historical incident referencing, the system not only enhanced diagnostic
accuracy but also improved response speed and reduced dependency on manual
intervention. This aligns with broader industry trends highlighted by who
noted that scalable and explainable RCA mechanisms are becoming central to
predictive maintenance strategies in telecom and infrastructure domains.

3. Evaluate the system quality and quality in use of the Remote Management
System (RMS) using the ISO 25010 standards.

Remote Management Systems (RMS) in telecommunications play a crucial
role in ensuring uninterrupted network performance, especially in geographically
distributed and often hard-to-reach cell sites. With increasing network complexity
and demand for uptime, the integration of Data Analytics and Machine Learning
(ML) has emerged as a powerful approach to automate monitoring, detect
anomalies, and diagnose faults efficiently.

To ensure the success and reliability of such systems, a robust evaluation
framework is essential. The ISO/IEC 25010 standard offers a globally accepted
model for assessing both System Quality (product-centric) and Quality in
Use (user-centric), making it ideal for evaluating Al-driven RMS solutions.
This paper applies ISO 25010 to evaluate the proposed intelligent system that
integrates anomaly detection and root cause analysis to enhance the management
of telecommunications infrastructure.

ISO/IEC 25010 defines eight System Quality characteristics and five Quality
in Use characteristics. These are used to comprehensively assess a system’s capability
to meet technical, operational, and user expectations. To comprehensively
evaluate the Data Analytics and Machine Learning (ML) applications designed
for Remote Management Systems (RMS) in telecommunications infrastructure,
the ISO/IEC 25010 framework offers a robust lens through which both System
Quality and Quality in Use can be assessed. This dual-perspective evaluation
ensures that the system’s technical performance and practical effectiveness are
rigorously scrutinized.

m



International Peer Reviewed Journal

From the System Quality perspective, internal attributes such as functional
suitability, performance efficiency, reliability, maintainability, portability, and
compatibility are examined. At the functional level, the anomaly detection
subsystem leverages advanced Python-based ML models, including random
forest ensembles, long short-term memory (LSTM) networks, and isolation
forests. These are trained on multi-dimensional telemetry datasets to detect
operational anomalies in Air Conditioning Units (ACUs), generators, batteries,
and AC mains. This approach aligns with Li et al. (2019), who demonstrated that
ensemble-based anomaly detection models outperform traditional threshold-
based systems in telecom fault monitoring by 15-20% in accuracy and false
positive suppression.

The functional suitability of the deployed models is evaluated using metrics
such as precision, recall, and F1-score, achieving a reduction of false alarms by
up to 70%. This is consistent with findings from Marino et al. (2018), who
noted that Al-driven techniques can significantly reduce noise and improve
systems robustness, improving both alarm validity and operational response
time. Moreover, performance efficiency is achieved through lightweight
models optimized for real-time inference, even under resource-constrained
environments—a design that echoes the architecture proposed by Kim et al.
(2023), who emphasized the need for computationally efficient Al in edge-based
telecom scenarios.

The system exhibits reliability through consistent detection accuracy
despite intermittent data flow and site-level connectivity issues, as supported
by Baranwal et al. (2025) who found fault-tolerant anomaly detectors with Al
automatically detect, predict, and respond to failure, which improves system
uptime. Furthermore, maintainability is addressed through modular architecture
using containerized Python services and automated model retraining pipelines
that adapt to data drift a strategy similar to that proposed by Zhang et al. (2021)
for predictive maintenance systems in industrial IoT environments.

On the portability and compatibility front, containerization technologies
such as Docker and orchestration via Kubernetes ensure seamless deployment
across diverse environments, including cloud (e.g., AWS, Azure), on premise data
centers, and edge computing sites. This reflects recommendations by O’Brien
and Downie (2025) who advocate containerized ML deployments as a means to
scale Al adoption across heterogencous telecom ecosystems.

In contrast, the Quality in Use domain centers on how effectively the system
supports user productivity, satisfaction, safety, and contextual coverage. The
Intelligent Root Cause Analysis (RCA) module is specifically designed to reduce
Mean Time to Resolution (MTTR) by leveraging historical incident pattern
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recognition, case-based reasoning, and multi-parameter correlation. These
capabilities align with Sharma et al. (2022), who reported that RCA systems
powered by knowledge graphs and incident libraries reduced MTTR by 50-65%
across distributed telecom networks.

User effectiveness is further enhanced by automating routine tasks, such as
issue categorization and preliminary diagnostics, thereby supporting streamlined
escalation paths and reducing manual workload a finding supported by Jiang
and Luo (2019), who showed that automation in telecom fault classification
improves operational throughput by 40%. Moreover, the Power BI dashboard
interface delivers real-time visualizations that are both intuitive and responsive,
ensuring that network analysts and field technicians can make informed decisions
quickly. The dashboard’s usability mirrors findings from Almasi et al. (2023),
who concluded that intelligent dashboards improve situational awareness and
reduce operator fatigue by facilitating at-a-glance anomaly identification and
actionable insights.

The system also supports the ISO 25010 “freedom from risk” attribute by
minimizing human error through guided diagnostic pathways. With automated
alert prioritization and cause suggestions, the probability of oversight or incorrect
manual intervention is significantly lowered. These features correspond with Park
and Kang (2024), who found that Al helps predict issues, monitor in real time,
and make automatic decisions. This leads to safer strategies that reduce risks,
improve efficiency, and support a safer, risk-free, and sustainable industry.

By anchoring the system’s evaluation in the ISO/IEC 25010 framework,
this research ensures a holistic assessment that addresses both software quality
and user-centric performance. The dual success in technical integrity and user
satisfaction illustrates the system’s strong alignment with emerging best practices
in Al-based telecom monitoring (Amster, 2025). Ultimately, the deployment
of this solution across 1004 telecommunications sites confirms its capacity to
optimize operational performance, reduce downtime, improve energy efficiency,
and supportscalable, intelligent decision-making—establishing a new benchmark
for Al-enabled remote infrastructure management in the telecommunications
industry.

CONCLUSIONS

The comprehensive methodology presented in this study illustrates
the practical and theoretical potential of integrating data analytics and
machine learning into Remote Management Systems (RMS) within the
telecommunications domain. By leveraging an array of machine learning
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models—including ensemble techniques such as Random Forest and Gradient
Boosting, the margin-maximizing capabilities of Support Vector Machines
(SVM), and the temporal sensitivity of Long Short-Term Memory (LSTM)
networks—the system is architected to handle a wide spectrum of anomaly
types with precision and adaptability. These models not only offer high detection
performance but also support nuanced insights into temporal and contextual
patterns of network faults.

To augment algorithmic diagnostics, the incorporation of pattern recognition
methods such as K-Nearest Neighbors (KNN) and Case-Based Reasoning (CBR)
introduces a valuable historical lens through which current anomalies can be
contextualized and interpreted. These additions enable the system to move
beyond mere classification and into the domain of intelligent reasoning, where
prior events inform current decision-making processes. Preprocessing pipelines,
including data cleansing, normalization, and feature selection, were carefully
designed to reduce noise and imbalance in real-world telemetry datasets, while the
use of Fl-score as a central evaluation metric allowed for balanced performance
measurement, especially in scenarios with skewed class distributions.

A distinguishing feature of this approach is the integration of a dynamic, rule-
based knowledge system that synergizes human domain expertise with machine-
learned inference. This hybrid architecture enhances diagnostic coverage,
particularly in edge cases where conventional models might lack sufficient
training data. By allowing for rule overrides and collaborative interpretation, the
system ensures a degree of human-in-the-loop oversight that is both scalable and
responsive.

Additionally, the deployment of multd-tiered validation mechanisms,
including ensemble agreement checks and explainability modules like
SHAP (SHapley Additive exPlanations), reinforces the trustworthiness and
interpretability of model outputs. These tools not only empower human operators
to understand and verify system behavior but also serve as guardrails against false
positives and black-box misjudgments.

Insummary, thisresearch lays the groundwork foranext-generation, Al-driven
RMS framework that is not only technically robust but also strategically aligned
with the operational challenges of modern telecommunications infrastructure. As
networks become increasingly complex, dynamic, and geographically distributed,
the solutions proposed here offer a resilient, scalable, and intelligent pathway for
maintaining performance continuity, optimizing maintenance workflows, and
enabling real-time, data-informed decision-making. Future work may explore
the integration of edge Al processing, federated learning for privacy-preserving
model training, and domain-specific adaptation techniques to further enhance
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generalizability and responsiveness across diverse telecom environments.
TRANSLATIONAL RESEARCH

This study exemplifies a strong translational research trajectory by
moving beyond theoretical model development and demonstrating how
intelligent analytics systems can be practically implemented within existing
telecommunications  infrastructure. The multi-model machine learning
framework—encompassing anomaly detection, root cause analysis, and decision
support—has direct applicability in real-world Remote Management Systems
(RMS) across geographically distributed network sites.

The integration of ensemble learning techniques, temporal models such
as LSTM, and diagnostic strategies like K-Nearest Neighbors and Case-Based
Reasoning provides a concrete foundation for deploying adaptive and self-learning
monitoring platforms. These models are not merely theoretical constructs but are
calibrated to handle noisy, real-world telemetry data and unpredictable network
behaviors that are common in field deployments.

Furthermore, the inclusion of a rules-based knowledge component ensures
that the system can operate in hybrid modes, combining human expertise with
machine inference. This directly benefits field engineers and network operators
by offering actionable insights, reducing the cognitive load, and accelerating
time-to-resolution during service outages or infrastructure faults.

In practical terms, the outputs of this research can be integrated into
Network Operations Centers (NOCs) and Service Management Systems (SMS)
via modular APIs, enabling seamless data ingestion, anomaly alerting, and
explainable decision support. Additionally, the use of explainability tools like
SHAP not only makes the system transparent to non-technical stakeholders but
also facilitates regulatory compliance and internal auditing—critical requirements
in the telecommunications industry.

The translational value is further underscored by the potential for
customization and localization. With retraining and fine-tuning on localized
datasets, the framework can be adapted to varying geographies, network
configurations, and operational policies, making it scalable and applicable for
regional telecom providers, particularly in Southeast Asia.

Ultimactely, this research provides a bridge between advanced machine
learning methodologies and their effective deployment in complex, real-world
telecommunications environments. The approach holds significant promise for
improving network reliability, reducing operational costs, and enhancing the
overall efficiency of infrastructure management systems.
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