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ABSTRACT

This paper presents a data-driven framework 
designed to enhance Remote Management 
Systems (RMS) in telecommunications 
infrastructure through the application of 
data analytics and machine learning (ML) 
techniques. The proposed solution does not 
require additional hardware; instead, it utilizes 
existing RMS data streams and applies advanced 
processing algorithms to address key challenges 
in anomaly detection and root cause analysis. 
The framework was deployed and validated 
across 1,004 telecom sites, resulting in significant 
operational improvements: a 40% reduction in 
mean time to repair (MTTR), a 25% decrease 

in maintenance costs, and enhanced network reliability with 99.98% system 
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availability. The anomaly detection module demonstrated 85% accuracy in 
identifying abnormal air conditioning unit (ACU) cycling patterns, with a 76% 
reduction in false alarms. Using a hybrid ML approach that combines supervised 
learning, unsupervised clustering, and correlation analysis, the system accurately 
detects complex operational issues such as abnormal cycle speeds and irregular 
fuel consumption. Additionally, it effectively identifies and corrects anomalies 
related to critical remote terminal (CRT) faults, including DC mains failures. 
Historical incident data is leveraged to support pattern recognition for accurate 
root cause analysis, achieving 83.3% accuracy. The framework also aligns with 
sustainability goals and adheres to ISO 25010 standards for system quality 
evaluation, offering both operational and environmental benefits.

INTRODUCTION
The global telecommunications industry is undergoing an unprecedented 

transformation, driven by the rapid acceleration of digitalization across sectors, 
the ubiquity of Internet-of-Things (IoT) devices, and the surging demand 
for high-speed, uninterrupted connectivity. With an estimated 29.3 billion 
networked devices expected by 2023 (Cisco, 2020), service providers are under 
immense pressure to maintain infrastructure that is both scalable and resilient. 
As networks evolve to include edge computing, cloud-native architectures, and 
5G/6G capabilities, their complexity increases exponentially posing significant 
challenges in maintaining consistent performance and reliability. Traditional 
maintenance and monitoring practices, often reliant on scheduled checks 
and threshold-based alarms, are increasingly inadequate in identifying and 
responding to faults in real-time (Minilec Group, 2024). In this context, Remote 
Management Systems (RMS) have become indispensable tools for managing 
distributed infrastructure. They enable real-time monitoring, alerting, and 
limited automation in operational workflows (Yang et al., 2019). However, many 
of these systems remain fundamentally reactive, relying heavily on predefined 
parameters and manual analysis, which limits their responsiveness to emerging 
anomalies and hinders timely root cause identification. The growing adoption of 
data analytics and machine learning (ML) within RMS is seen as a transformative 
shift—enabling predictive maintenance, intelligent fault detection, and dynamic 
decision-making that collectively reduce downtime and enhance system reliability 
(Gupta & Sharma, 2020).

In Southeast Asia—particularly in the Philippines—the operational 
challenges are amplified by geographic, environmental, and infrastructural 
factors. The nation’s archipelagic landscape, comprising over 7,000 islands, poses 
substantial logistical hurdles in deploying and maintaining telecommunications 
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infrastructure. Remote telecom sites are often inaccessible by road and are 
frequently impacted by adverse weather conditions, including typhoons, monsoon 
flooding, and high humidity, which can accelerate equipment wear and complicate 
emergency response (Salac et al., 2024). These conditions elevate operational risks 
and costs, especially in the absence of intelligent, automated systems. Although 
RMS technologies are being increasingly deployed, most implementations are 
limited to basic telemetry and alarm functions without advanced analytics 
capabilities. As a result, telecom operators experience prolonged mean times to 
repair (MTTR), inefficient resource allocation, and suboptimal service availability 
(Schwarz, 2024). Compounding these issues is the heterogeneity of hardware 
vendors and legacy platforms, which creates integration challenges and limits the 
scalability of existing RMS tools. Despite regional initiatives such as the ASEAN 
ICT Masterplan 2020, which promotes digital transformation and infrastructure 
modernization, practical implementation often lags due to budgetary, technical, 
and regulatory constraints. These challenges underscore the critical need for 
innovative, scalable, and intelligent solutions tailored to the region’s specific 
infrastructure and environmental realities.

A review of current literature reveals a considerable research gap in 
developing cost-effective, AI-driven RMS solutions that can be deployed using 
existing infrastructure without the need for substantial hardware investment. 
Most existing studies in the field have focused on component-level anomaly 
detection or specific use cases, such as temperature control in base stations or 
fuel consumption monitoring (Panza et al., 2023). Few have adopted a holistic 
approach that leverages real-time RMS data streams to enable end-to-end 
monitoring, diagnosis, and optimization. Moreover, while some research has 
explored either supervised or unsupervised learning models in isolation, there 
is limited empirical work combining both paradigms into a hybrid system 
capable of handling complex, multidimensional operational patterns. This lack 
of comprehensive, integrative frameworks limits the ability of telecom operators 
to make data-driven decisions in dynamic field environments. Addressing this 
gap, the present study proposes a novel hybrid machine learning framework 
that integrates supervised classification, unsupervised clustering, and correlation 
analysis to enhance fault detection and root cause analysis in RMS. The proposed 
solution capitalizes on existing telemetry data from telecom sites, aiming to reduce 
operational downtime, maintenance costs, and energy usage while advancing 
both environmental sustainability and service reliability.
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FRAMEWORK

Figure 1
Conceptual Framework for AI-Enhanced Remote Management System

The conceptual framework for this research revolves around the systematic 
flow and integration of data analytics within a Remote Management System 
(RMS) designed for telecommunications infrastructure. As illustrated in Figure 2, 
the framework demonstrates how artificial intelligence (AI) and machine learning 
(ML) technologies are embedded into the architecture to address key challenges 
such as anomaly detection and root cause analysis—areas where traditional 
systems often fall short. The design is structured around five interconnected 
components, each contributing a vital function to form an end-to-end intelligent 
management solution.

The first component, Data Sources, encompasses a wide array of inputs 
crucial for comprehensive monitoring. These include telemetry from telecom 
infrastructure components, environmental and operational parameters captured 
by IoT sensors, records of past maintenance activities, and real-time network 
traffic and performance metrics. The inclusion of diverse data types enables the 
creation of operational baselines and supports the identification of patterns that 
may otherwise go unnoticed, offering a more nuanced understanding of system 
behavior.

The second component, Real-Time Data Collection, ensures that data 
from multiple sources is aggregated, centralized, and archived in a cloud-based 
environment. This setup allows for both real-time and historical analysis, solving 
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issues related to data heterogeneity and format inconsistency. It guarantees that 
the collected data is consistently available for immediate diagnostic purposes and 
long-term strategic planning, thereby enhancing the reliability of monitoring 
activities.

The third component, Real-Time Data Preprocessing, represents the 
analytical core of the framework. Here, AI and ML models operate to detect 
anomalies by analyzing patterns and correlations across various data points. A 
specialized ML model pinpoints specific inconsistencies such as temperature 
variations related to air conditioning units or discrepancies between generator 
fuel levels and energy output. A hybrid prediction model combines data-driven 
analytics with physics-based simulations to reflect real-world equipment behavior 
more accurately. Additionally, an advanced analytics model compares new 
anomalies with historical incidents to identify the most probable root causes, 
streamlining the decision-making process.

The fourth component, Remote Monitoring and Visualization, translates 
complex analytical findings into actionable insights through an intuitive 
graphical user interface (GUI). This interface displays detected anomalies, their 
severity, potential causes, and historical data comparisons. Users can engage in 
drill-down analysis for deeper exploration, which empowers technical teams to 
make informed decisions quickly and effectively. This layer is critical in ensuring 
that the system’s advanced capabilities are accessible and usable for everyday 
operations.

The fifth and final component, Professional Decision Making, underscores 
the importance of human expertise in interpreting data and implementing 
corrective actions. Rather than making autonomous decisions, the system 
provides recommendations supported by evidence and historical context. It also 
adapts to user feedback and operational preferences, fostering a dynamic learning 
environment within the system itself. This “human-in-the-loop” approach 
ensures that technology complements rather than replaces human judgment, 
which is essential for the successful adoption and integration of such systems 
within organizational structures.

Overall, this conceptual framework serves as a blueprint for an intelligent, 
scalable, and user-oriented Remote Management System for telecommunications. 
It not only enhances operational efficiency and incident response but also builds 
the foundation for sustainable digital transformation through advanced analytics 
and AI integration.
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OBJECTIVES OF THE STUDY

This study aimed to develop a machine learning framework that enhances 
existing Remote Management Systems (RMS) in telecommunications 
infrastructure without the need for new hardware deployment. The primary 
objective is to build an advanced anomaly detection system capable of analyzing 
patterns in air conditioning unit (ACU) behavior, fuel consumption, power 
efficiency, and backup system performance to detect operational issues early and 
minimize false alarms. Additionally, the study seeks to create an intelligent root 
cause analysis system that utilizes historical incident data to suggest probable 
causes for detected anomalies, thereby improving repair times and enhancing the 
accuracy of escalation processes. Finally, the research includes an evaluation of 
the system based on the ISO/IEC 25010 standards, focusing on aspects such as 
system quality, usability, and performance, to ensure the solution aligns with the 
operational requirements of modern telecommunications environments.

METHODOLOGY

This research employed a systematic approach to designing and implementing 
a data analytics and machine learning framework specifically targeting the 
limitations in anomaly detection and root cause analysis found in current RMS 
platforms. This methodology combined theoretical development with practical 
implementation to ensure both academic rigor and real-world applicability.

Research Design Process
Data Analytics and machine Learning Applications for Remote Management 

Systems

Figure 2
Research Design Process Flow Chart
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This research utilized design science research methodology, which focused 
on creating and evaluating innovative solutions to complex organizational 
problems. This methodological approach involved six sequential phases: problem 
identification and motivation through extensive literature review and industry 
consultation to identify specific limitations in current RMS platforms; solution 
objectives definition based on identified gaps, establishing clear objectives and 
performance targets for our framework; design and development of specific 
components addressing the identified limitations; prototype implementation 
across selected telecommunications sites as a functional prototype; evaluation 
through comprehensive testing using real-world telecommunications data; 
and communication and refinement where results were documented and the 
framework continuously refined based on performance feedback.

Implementation Framework
The implementation focused on creating processing layers integrated with 

existing RMS data streams. The data integration layer included connectors to 
existing RMS databases and feeds, data standardization and quality validation 
algorithms, historical data processing for pattern establishment, and time-series 
data aggregation and normalization. The AI processing engine incorporated 
machine learning pipelines for anomaly detection, pattern recognition algorithms 
for identifying complex correlations, knowledge base development for root 
cause analysis, and continuous learning mechanisms for model refinement. The 
visualization and reporting layer featured dashboard interfaces for displaying 
processed insights, alert generation based on detected anomalies, recommendation 
systems for troubleshooting guidance, and tools for performance reporting and 
trend analysis.

Data collection followed a structured protocol to ensure consistency, with 
automated quality validation algorithms used to detect and flag potential 
anomalies or inconsistencies for manual verification. Data analysis employed 
multiple statistical and machine learning techniques, including descriptive 
statistics to establish baseline performance metrics and normal operational 
ranges. Machine learning models such as ensemble methods—including Random 
Forest, Gradient Boosting, and Support Vector Machines—were utilized for 
anomaly detection (achieving 85% accuracy). Pattern recognition algorithms, 
including K-nearest neighbors and case-based reasoning, were applied for 
root cause identification (achieving 83% accuracy). Correlation analysis using 
Pearson and Spearman coefficients identified relationships between operational 
parameters. Significance testing through paired t-tests compared pre- and post-
implementation performance metrics, while economic analysis included ROI 
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calculations and operational cost modeling. These techniques were selected for 
their suitability to telecommunications operational data and were implemented 
using Python’s scientific libraries (NumPy, SciPy, Pandas) and specialized machine 
learning frameworks.

Overview of Architecture and Model Pipeline
The Remote Management System (RMS) integrates a comprehensive suite 

of data analytics and machine learning techniques to facilitate the autonomous 
management of telecommunications infrastructure. The system is engineered to 
proactively detect anomalous behavior, identify root causes of faults, and validate 
diagnostic outputs to ensure reliability and trustworthiness. The RMS pipeline 
encompasses multiple layers, starting with the ingestion of real-time telemetry 
data and SNMP (Simple Network Management Protocol) logs from network 
devices. These inputs are essential for monitoring parameters such as bandwidth 
usage, signal degradation, CPU/memory utilization, and environmental metrics 
(e.g., temperature, humidity).

Once data is collected, it undergoes preprocessing, which includes noise 
filtering, data normalization, and time-series decomposition. This stage is critical 
for standardizing input features and enhancing the accuracy of downstream 
machine learning models. Following preprocessing, the data is passed to the 
machine learning engine for anomaly detection, where the system identifies 
patterns deviating from normal behavior. These anomalies are then subjected 
to a root-cause analysis layer using pattern recognition techniques. To support 
interpretability and decision-making, an integrated knowledge base of historical 
fault cases and expert-curated rules is consulted. Finally, quality validation modules 
ensure that only high-confidence insights are presented to end-users through a 
centralized RMS dashboard. This dashboard enables network administrators 
to visualize alerts, recommended resolutions, and historical trends. A system 
architecture diagram (Figure 1) illustrates the interaction between these layers, 
including data flows from edge devices to cloud-based analytics and visualization 
modules.

Machine Learning Design for Anomaly Detection 
Anomaly detection within telecommunications networks is a critical 

capability that ensures early identification of service degradation, equipment 
failure, or potential security breaches. In this study, supervised learning models 
were selected due to the availability of labeled datasets. Specifically, Random 
Forest (RF), Gradient Boosting (GB), and Support Vector Machines (SVM) were 
chosen for their proven effectiveness in classification problems, especially under 
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high-dimensional conditions.
The dataset used for model training and evaluation is defined as, where 

each input vector represents a set of measured network features (e.g., RSSI, 
throughput, packet loss rate), and denotes whether the instance is normal (0) or 
anomalous (1). Preprocessing is essential for ensuring data quality. Missing values 
are handled using statistical imputation techniques such as mean substitution 
and k-nearest neighbor (k-NN) averaging. Outlier removal is implemented 
using Z-score thresholding and interquartile range filtering. The feature set is 
then normalized using Min-Max scaling to bring all variables into the range 
[0, 1]. Additionally, categorical variables (e.g., equipment type, alarm category) 
are encoded into numerical form using one-hot encoding or ordinal encoding 
schemes. Temporal features are engineered to represent past behavior, using 
methods such as lag variables, moving averages, and windowed aggregates.

Three machine learning algorithms are applied independently to assess their 
anomaly detection capabilities. Random Forest constructs an ensemble of decision 
trees using bootstrap aggregation. Each tree votes on the class of an instance, and 
the final prediction is the majority vote. One key advantage of RF is its ability 
to assess feature importance using metrics like Gini impurity reduction, which 
aids in understanding the primary contributors to network anomalies. Gradient 
Boosting, in contrast, builds trees sequentially, with each tree attempting to 
minimize the residual error of the previous ensemble using gradient descent. It is 
optimized using binary cross-entropy loss and a regularization strategy to prevent 
overfitting. Support Vector Machines aim to identify the optimal hyperplane that 
maximizes the margin between the two classes in the dataset. Both linear and 
radial basis function (RBF) kernels are evaluated. Since real-world data is often 
imbalanced (i.e., fewer anomalies than normal cases), the dataset is balanced 
using Synthetic Minority Over-sampling Technique (SMOTE), and cost-
sensitive learning is employed to penalize misclassification of minority instances.

Model performance is evaluated using 5-fold stratified cross-validation to 
preserve the proportion of classes in each fold. Metrics such as precision, recall, 
F1-score, and the area under the ROC curve (AUC-ROC) are computed. Among 
the three models, Random Forest achieves the best overall performance, with an 
F1-score of 0.93 and robust generalization across validation sets. Consequently, 
RF is selected as the primary anomaly detection model for deployment in the 
production RMS environment.

Pattern Recognition for Root-Cause Analysis
After an anomaly is detected, determining its root cause is essential for 

initiating corrective action. The RMS employs two primary techniques for root-
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cause analysis: K-Nearest Neighbors (KNN) and Case-Based Reasoning (CBR). 
KNN is a non-parametric method that identifies historical data points most 
similar to the current anomaly. For a given test instance, the Euclidean distance is 
calculated against all training instances. The k closest samples, are selected. These 
neighbors serve as a reference group whose labelled root causes are aggregated, 
either through simple majority voting or a distance-weighted scheme. This allows 
the system to infer probable causes based on known behavior, assuming that 
similar input patterns likely stem from similar faults. Additionally, KNN helps 
localize the features most responsible for the anomaly by analyzing variance 
within the neighborhood.

Case-Based Reasoning extends this logic by referencing a curated database of 
previous cases, denoted as, where is the observed data, is the diagnosed cause, and 
is the resolution applied. When an anomaly is detected, cosine similarity is used 
to match the new case with existing ones in the database. The most similar cases 
are retrieved, and their associated causes and resolutions are recommended to 
the operator. The confidence level of each recommendation is determined by the 
degree of similarity. CBR adds significant value to the RMS by mimicking human 
reasoning and offering traceable, case-based justifications for the recommended 
response.

Knowledge Base Construction and Usage
The knowledge base (KB) serves as the backbone of expert-guided decision-

making within the RMS. It stores not only empirical data from past network 
incidents but also rules derived from domain expertise. The KB comprises fault 
signatures—specific patterns in telemetry data that indicate known issues; causal 
mappings, which translate conditions into likely causes and corresponding 
corrective actions; and resolution records that document how each issue was 
resolved and the success rate of interventions.

The rules in the knowledge base are encoded using JSON and evaluated by 
a rule engine such as Drools. For example, a rule might state that if the RSSI is 
below -100 dBm and there is a voltage drop recorded at the power input node, 
then the root cause is likely a power supply failure. The recommended action in 
this case would be to inspect and replace the site’s UPS battery. During real-time 
operation, the RMS continuously evaluates these rules in parallel with machine 
learning predictions. When a rule condition is met, its conclusion is logged 
and presented in the dashboard alongside model-generated insights. This dual 
system ensures that even if the machine learning model fails to recognize a new 
or ambiguous pattern, the KB can still provide actionable guidance.
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Quality Validation Algorithms
To reinforce the credibility of the RMS outputs, a layered validation 

framework is employed. The first layer involves ensemble consistency scoring. 
Predictions from the RF, GB, and SVM models are aggregated, and a consensus 
score is calculated based on how many models agree that an instance is anomalous. 
If this score exceeds a predefined threshold, the system considers the anomaly to 
be high-confidence and passes it on for root-cause analysis.

Further validation is achieved using evaluation metrics on a dedicated hold-
out test set. These include ROC-AUC, which quantifies the trade-off between 
true positive and false positive rates, and PR-AUC, which is more informative 
in cases of class imbalance. Additionally, confusion matrices are generated to 
visualize performance across all classes, allowing the research team to identify 
areas where the model might underperform.

To promote interpretability, SHAP values are calculated for each anomaly 
instance. These values explain the contribution of each feature to the final 
prediction, thereby making the model’s decision transparent to network 
operators. For example, if an anomaly is flagged due to high packet loss and low 
RSSI, SHAP values will indicate the exact influence of these features, enabling 
engineers to validate whether the model’s reasoning aligns with their domain 
knowledge.

Data Collection and Analysis
The research incorporated operational data from 1,004 telecommunications 

sites representing diverse environments (urban, suburban, and rural) and varying 
equipment configurations. Primary data sources included real-time telemetry 
data (power, temperature, humidity), historical operational logs for ACUs and 
power systems, incident records with documented root causes (3,270 records), 
fuel consumption and generator runtime logs (covering 24 months of historical 
data), PUE measurements and sensor deployment records, AC mains failure 
incidents and corresponding system responses, as well as maintenance records 
and technical visit reports (4,580 records).

To complement the primary data and establish theoretical foundations, 
the study utilized secondary data sources, including industry standards and 
technical specifications, equipment manufacturer guidelines, academic literature 
on anomaly detection and root cause analysis, and case studies from the 
telecommunications industry. Moreover, it employed a multi-method analytical 
approach, incorporating statistical analysis to establish baseline performance 
metrics and normal operational ranges, machine learning model development to 
create specialized models for enhanced RMS data processing, comparative analysis 
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to evaluate performance against conventional RMS approaches, and stakeholder 
assessment to gather qualitative feedback through structured interviews with 
operations personnel.

Statistical Techniques
Data analysis employed a variety of statistical and machine learning techniques 

to thoroughly evaluate the system. Descriptive statistics were used to establish 
baseline performance metrics and define normal operational ranges. Ensemble 
machine learning models, including Random Forest, Gradient Boosting, and 
Support Vector Machines, were applied for anomaly detection, achieving an 
accuracy of 85%. Pattern recognition algorithms, such as K-nearest neighbors 
and case-based reasoning, were utilized for root cause identification, with an 
accuracy of 83%. Correlation analysis, using Pearson and Spearman coefficients, 
identified relationships between various operational parameters. Significance 
testing through paired t-tests was conducted to compare performance metrics 
before and after implementation. Additionally, economic analysis involved 
return on investment (ROI) calculations and operational cost modeling to assess 
the financial impact. These techniques were carefully selected for their relevance 
to telecommunications operational data and were implemented using Python’s 
scientific libraries, including NumPy, SciPy, and Pandas, along with specialized 
machine learning frameworks.

RESULTS AND DISCUSSION

1.	 System Implementation and Performance Metrics
The full-scale deployment of the proposed Remote Management System 

(RMS) framework across 1,004 telecommunications sites provided concrete 
evidence of its efficacy and adaptability under real-world conditions. The 
framework was structured into three primary architectural layers, namely: the 
Edge Layer, the Core Processing Layer, and the Presentation Layer. The Edge 
Layer was responsible for local data ingestion and lightweight anomaly detection 
using pre-trained machine learning models. By pre-filtering and tagging data 
near the source, latency was reduced, and immediate alerts could be generated 
without the need to transmit large volumes of raw telemetry to central servers.

The Core Processing Layer, hosted on scalable cloud infrastructure, centralized 
data from all sites and ran comprehensive analytics workflows, including 
advanced pattern recognition, temporal analysis, and predictive modeling. This 
layer housed the most computationally intensive components, including LSTM 
networks for time-series analysis and ensemble models for anomaly classification. 
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The Presentation Layer, built using Microsoft Power BI, presented operational 
insights through interactive dashboards tailored to different user roles—network 
administrators, field engineers, and executive decision-makers. These dashboards 
enhanced situational awareness and enabled stakeholders to make data-driven 
decisions in real-time.

Following implementation, several key performance indicators (KPIs) 
showed substantial improvements. Mean Time to Repair (MTTR) decreased 
from 4.0 hours to 2.5 hours, a 40% improvement. This outcome aligns with 
the findings of García-Torres et al. (2022), who reported that machine learning–
based fault localization could reduce MTTR by 35–50% in telecommunications 
systems. Similarly, Stephen and Sheriffdeen (2022) found that AI-enabled 
diagnostics in industrial IoT reduced MTTR through preemptive detection of 
cascading failures. The shorter MTTR was attributed to the system’s automated 
root cause analysis engine, which quickly identified anomalies and traced fault 
origins without requiring manual diagnostics.

In addition, annual maintenance costs per site decreased from $4,250 to 
$3,188, representing a 25% reduction. This cost efficiency supports conclusions 
by Mobley (2002), who emphasized that predictive maintenance strategies could 
reduce maintenance expenses by up to 30% through early fault identification 
and optimized scheduling. Olaoluwa and Potter (2024), further emphasized the 
importance of integrating analytics with maintenance planning, highlighting 
that such integration leads to better resource allocation and cost predictability 
in critical infrastructure sectors. Moreover, the platform’s ability to minimize 
unnecessary dispatches of technicians directly contributed to this cost reduction.

The system also yielded a significant reduction in false alarm rates, dropping 
from 35% to 8.6% (a 76% reduction). This result validates prior studies by Wang 
et al. (2019) who demonstrated that hybrid classification models integrating 
anomaly detection and context-aware filtering could eliminate non-critical alerts 
by up to 80%. Çınar et al. (2020) similarly reported that machine learning–
driven predictive maintenance systems help distinguish genuine issues from 
benign signal deviations, thereby reducing operator fatigue and optimizing 
technician workloads. The reduction in false alarms also minimized unnecessary 
maintenance actions and preserved system uptime.

Furthermore, the average resolution time for incidents dropped from 5.8 hours 
to 3.4 hours—a 42% improvement. This mirrors findings by Kwon et al. (2019), 
who showed that real-time anomaly detection using edge computing frameworks 
could accelerate fault isolation and resolution by integrating immediate on-site 
intelligence with centralized analytics. The decrease in resolution time was also 
attributed to the Root Cause Analysis Center, which provided historical data 
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correlations, eliminating guesswork during incident response.

Figure 3
Energy Management Dashboard powered by Power BI Software

To facilitate operational intelligence and enhance decision-making, the 
framework introduced an integrated Energy Management Dashboard (Figure 3) 
built on Power BI. The dashboard comprised four views: a System Overview for 
high-level monitoring, an Anomaly Detection View for real-time alert analysis, 
a Root Cause Analysis Center for tracing error chains, and a Site-Specific Detail 
View for localized diagnostics. This modular dashboard enabled dynamic 
visualization of critical metrics, significantly enhancing user interaction and 
comprehension.

The value of this visual intelligence layer was evident from a user survey 
conducted post-deployment, where 87% of operations personnel reported 
enhanced situational awareness and faster incident response. This is consistent 
with Alahakoon and Yu (2016), who emphasized the role of data visualization in 
reducing cognitive overload and improving comprehension in smart grid systems. 
Zhang et al. (n.d.) also found that interactive dashboards are useful tools that let 
officials and municipal planners work with and evaluate data in real time. These 
dashboards improve strategic planning efforts by enabling decision-makers to 
display intricate datasets in an understandable and useful way.
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Collectively, these improvements underscore the transformative potential 
of integrating advanced data analytics and machine learning into existing 
Remote Management Systems. The observed outcomes—reduced repair times, 
lower maintenance costs, improved availability, fewer false alarms, and quicker 
resolutions—are strongly supported by established research across industrial 
engineering, telecommunications, and smart system design.

Anomaly Detection Performance
The anomaly detection subsystem exhibited robust performance, particularly 

in identifying both sudden and gradual deviations in telemetry. The framework 
achieved an overall accuracy rate of 85% across all monitored parameters, with 
a false positive rate held at just 8.6%. The Random Forest model was the best-
performing algorithm, achieving an F1-score of 0.93, validating its ability to 
balance sensitivity and specificity in imbalanced datasets. The use of F1-score 
as a primary metric ensured that the model was evaluated on its capability to 
minimize both false positives and false negatives, a critical requirement in systems 
where both types of errors incur operational costs.

The F1-score was chosen over simple accuracy because the dataset used for 
training and validation had class imbalance—anomalous cases were significantly 
rarer than normal operational data. In such scenarios, accuracy can be misleading, 
as a model predicting all cases as normal may still achieve high accuracy without 
detecting true anomalies. The F1-score, which harmonizes precision and recall, 
provides a more nuanced view of performance, especially in critical applications 
where undetected faults can lead to major operational disruptions.

Notably, the Long Short-Term Memory (LSTM) network added a critical 
temporal dimension to anomaly detection. Its ability to track evolving trends 
over time was particularly beneficial for diagnosing anomalies in cooling and 
power systems, which often exhibit cumulative degradation rather than abrupt 
failure. For instance, the LSTM detected anomalous patterns in ACU runtimes 
that gradually increased due to thermal inefficiencies, flagging issues even 
before hard thresholds were crossed. This proactive capability allowed for timely 
intervention, reducing equipment stress and preventing costly downtime.

The system’s multi-parameter analysis engine significantly enhanced fault 
detection capabilities. In ACU monitoring, the model correlated internal 
run-time parameters with external temperature and humidity data to identify 
inefficiencies. This led to a 32% reduction in unnecessary replacements. Similarly, 
the generator module flagged discrepancies between fuel consumption and power 
output, accurately detecting fuel theft or leakage in 89% of flagged cases. These 
capabilities significantly improved trust in anomaly alerts, providing operators 
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with context-rich alerts instead of binary warnings.
In addition, the Power Usage Effectiveness (PUE) anomaly detection features 

successfully identified sites with inefficiencies due to cooling misconfigurations or 
faulty sensors. The framework triggered corrective actions, such as reinstallation 
of environmental sensors or equipment recalibration, which led to a 22% 
average improvement in site-level PUE. These outcomes align with Hosamo and 
Mazzetto (2025), who emphasized the importance of anomaly detection systems 
in enabling energy optimization in distributed infrastructure. Improved energy 
metrics directly supported organizational sustainability goals and reduced carbon 
emissions.

Figure 4
Site Anomalies Dashboard based on Power Performance Indicators

The system’s multi-parameter correlation engine played a critical role in 
identifying anomalies not detectable by conventional univariate approaches. One 
notable example was in Air Conditioning Unit (ACU) monitoring, where the 
framework cross-referenced runtime metrics with environmental temperature 
readings to uncover inconsistencies in 87% of evaluated cases. Specifically, it 
identified excessive runtimes and improper cycling behavior that are typically 
symptomatic of system inefficiencies or environmental sensor misconfigurations. 
This advanced detection capability led to a 32% reduction in unnecessary ACU 
replacements, translating to both reduced downtime and significant cost savings. 
These findings reinforce the conclusions of Xue et al. (2020), who emphasized that 
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anomaly detection techniques that incorporate equipment-specific operational 
profiles can significantly reduce false maintenance triggers and improve asset 
utilization. Additionally, Wang et al. (2024) highlighted that cross-domain data 
fusion in HVAC monitoring improves fault detection sensitivity, especially in 
noisy or sensor-sparse environments—a design principle echoed in this study’s 
correlation layer. 

In a parallel application, the generator-fuel consumption correlation module 
demonstrated its effectiveness in identifying fuel-related anomalies with an 
accuracy of 89%, flagging irregular consumption patterns that were indicative of 
fuel theft or leakage. The system achieved an average detection time of 6.4 hours, 
a critical advancement compared to traditional log-based inspection systems that 
may take days to flag discrepancies. This capability aligns with the findings of Wang 
et al. (2019), who reported that anomaly detection systems utilizing real-time 
fuel consumption analysis could reduce unnecessary site visits and operational 
response time for power-related issues by 60–70%. Their research highlighted 
the effectiveness of combining telemetry data with predictive analytics to identify 
and prevent unauthorized resource usage, especially in remote or unmanned 
locations.

Another key function of the framework was its Power Usage Effectiveness 
(PUE) anomaly detection component, which was designed to monitor energy 
efficiency across telecom sites. The system flagged PUE values exceeding 2.0 
and successfully correlated these anomalies with root causes such as missing 
environmental sensors or suboptimal cooling configurations. In 76% of high-
PUE cases, the system identified missing or misconfigured sensor installations 
as the primary contributing factor. Based on these insights, prioritized 
sensor deployment recommendations were issued, leading to a 22% average 
improvement in PUE across affected sites. This result echoes the conclusions of 
pbctoday (2025), who demonstrated that IoT ecosystem network diagnostics can 
significantly optimize energy performance and enable a dynamic understanding of 
the building’s environment. Likewise, Hosamo and Mazzetto (2025) emphasized 
the importance of energy-aware monitoring systems in telecom infrastructure, 
showing that smart anomaly detection frameworks can serve as early-warning 
systems for deteriorating energy efficiency.

These integrated results collectively validate the utility of context-aware 
and multi-metric anomaly detection models in large-scale remote management 
applications. Unlike traditional RMS platforms that operate in a reactive and 
often siloed manner, the presented system demonstrates how multi-dimensional 
analysis, when coupled with machine learning, can proactively surface operational 
inefficiencies, reduce resource wastage, and enhance overall system resilience. 
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By embedding these anomaly detection capabilities directly into the RMS 
architecture, the framework effectively bridges the gap between raw telemetry 
data and actionable operational intelligence.

2. Root Cause Analysis Performance
The Root Cause Analysis (RCA) module embedded in the enhanced RMS 

framework significantly advanced the system’s troubleshooting capabilities by 
enabling rapid, accurate diagnosis of operational anomalies. Across all evaluated 
incidents, the system achieved an 83% accuracy rate in correctly identifying 
probable causes of faults and performance irregularities. This performance not 
only surpasses the 67% accuracy rate reported by Wang et al. (2017) for Bayesian 
Network models applied in telecom fault diagnostics but also closely approaches 
the 79% accuracy achieved by Rodríguez et al. (2023) in diagnosing anomalies in 
complex server infrastructures using case-based reasoning (CBR). The improved 
performance of the present system can be attributed to its integration of both 
statistical inference and semantic pattern recognition, which enables it to reason 
through complex interdependencies within multi-layered telemetry data—a 
limitation frequently cited in traditional diagnostic models (Parthasarathy et al., 
2023).

One of the key strengths of the system lies in its historical pattern matching 
capabilities, which allowed it to correlate current anomalies with previously 
recorded incidents across 1004 sites. In 76% of analyzed cases, the framework 
successfully identified recurring patterns tied to specific equipment models, 
firmware versions, and environmental configurations. This functionality 
significantly enhanced diagnostic precision and reduced the need for redundant 
manual investigation. The average diagnostic time was reduced by 57%, a result 
that mirrors the outcomes of Sharma et al. (2022), who reported that automated 
root cause identification using pattern recognition algorithms could reduce fault 
isolation times by 50–65% in telecom environments. Moreover, Jiang and Luo 
(2019) demonstrated that pattern-driven RCA frameworks, when applied across 
distributed site architectures, substantially outperform manual troubleshooting 
workflows in environments with high configuration diversity—an observation 
that reinforces the value of historical learning within intelligent RMS platforms.

Additionally, the deployment of a standardized issue categorization protocol 
across the system dramatically improved communication clarity during incident 
escalation. Specifically, the system reduced language ambiguity by 64%, resulting 
in more precise and actionable escalation tickets. Furthermore, the frequency of 
unnecessary escalations dropped by 52%, due to the automation of preliminary 
diagnostics and issue classification at the site level. These improvements led to 
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a 38% reduction in average escalation resolution time, validating the approach 
advocated by Ahmed et al. (2022), who emphasized the impact of structured 
incident taxonomies on operational efficiency in network management systems. 
Their study found that standardized categorization practices reduced resolution 
times by 30–45%, especially when combined with automated case referencing 
and tiered resolution strategies.

Collectively, these findings underscore the substantial operational gains 
achievable through intelligent, integrated root cause analysis within RMS 
ecosystems. By coupling pattern-based learning with structured issue classification 
and historical incident referencing, the system not only enhanced diagnostic 
accuracy but also improved response speed and reduced dependency on manual 
intervention. This aligns with broader industry trends highlighted by 	  who 
noted that scalable and explainable RCA mechanisms are becoming central to 
predictive maintenance strategies in telecom and infrastructure domains.

3. Evaluate the system quality and quality in use of the Remote Management 
System (RMS) using the ISO 25010 standards.
Remote Management Systems (RMS) in telecommunications play a crucial 

role in ensuring uninterrupted network performance, especially in geographically 
distributed and often hard-to-reach cell sites. With increasing network complexity 
and demand for uptime, the integration of Data Analytics and Machine Learning 
(ML) has emerged as a powerful approach to automate monitoring, detect 
anomalies, and diagnose faults efficiently.

To ensure the success and reliability of such systems, a robust evaluation 
framework is essential. The ISO/IEC 25010 standard offers a globally accepted 
model for assessing both System Quality (product-centric) and Quality in 
Use (user-centric), making it ideal for evaluating AI-driven RMS solutions. 
This paper applies ISO 25010 to evaluate the proposed intelligent system that 
integrates anomaly detection and root cause analysis to enhance the management 
of telecommunications infrastructure.

ISO/IEC 25010 defines eight System Quality characteristics and five Quality 
in Use characteristics. These are used to comprehensively assess a system’s capability 
to meet technical, operational, and user expectations. To comprehensively 
evaluate the Data Analytics and Machine Learning (ML) applications designed 
for Remote Management Systems (RMS) in telecommunications infrastructure, 
the ISO/IEC 25010 framework offers a robust lens through which both System 
Quality and Quality in Use can be assessed. This dual-perspective evaluation 
ensures that the system’s technical performance and practical effectiveness are 
rigorously scrutinized.
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From the System Quality perspective, internal attributes such as functional 
suitability, performance efficiency, reliability, maintainability, portability, and 
compatibility are examined. At the functional level, the anomaly detection 
subsystem leverages advanced Python-based ML models, including random 
forest ensembles, long short-term memory (LSTM) networks, and isolation 
forests. These are trained on multi-dimensional telemetry datasets to detect 
operational anomalies in Air Conditioning Units (ACUs), generators, batteries, 
and AC mains. This approach aligns with Li et al. (2019), who demonstrated that 
ensemble-based anomaly detection models outperform traditional threshold-
based systems in telecom fault monitoring by 15–20% in accuracy and false 
positive suppression.

The functional suitability of the deployed models is evaluated using metrics 
such as precision, recall, and F1-score, achieving a reduction of false alarms by 
up to 70%. This is consistent with findings from Marino et al. (2018), who 
noted that AI-driven techniques can significantly reduce noise and improve 
systems robustness, improving both alarm validity and operational response 
time. Moreover, performance efficiency is achieved through lightweight 
models optimized for real-time inference, even under resource-constrained 
environments—a design that echoes the architecture proposed by Kim et al. 
(2023), who emphasized the need for computationally efficient AI in edge-based 
telecom scenarios.

The system exhibits reliability through consistent detection accuracy 
despite intermittent data flow and site-level connectivity issues, as supported 
by Baranwal et al. (2025) who found fault-tolerant anomaly detectors with AI 
automatically detect, predict, and respond to failure, which improves system 
uptime. Furthermore, maintainability is addressed through modular architecture 
using containerized Python services and automated model retraining pipelines 
that adapt to data drift a strategy similar to that proposed by Zhang et al. (2021) 
for predictive maintenance systems in industrial IoT environments.

On the portability and compatibility front, containerization technologies 
such as Docker and orchestration via Kubernetes ensure seamless deployment 
across diverse environments, including cloud (e.g., AWS, Azure), on premise data 
centers, and edge computing sites. This reflects recommendations by O’Brien 
and Downie (2025) who advocate containerized ML deployments as a means to 
scale AI adoption across heterogeneous telecom ecosystems.

In contrast, the Quality in Use domain centers on how effectively the system 
supports user productivity, satisfaction, safety, and contextual coverage. The 
Intelligent Root Cause Analysis (RCA) module is specifically designed to reduce 
Mean Time to Resolution (MTTR) by leveraging historical incident pattern 
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recognition, case-based reasoning, and multi-parameter correlation. These 
capabilities align with Sharma et al. (2022), who reported that RCA systems 
powered by knowledge graphs and incident libraries reduced MTTR by 50–65% 
across distributed telecom networks.

User effectiveness is further enhanced by automating routine tasks, such as 
issue categorization and preliminary diagnostics, thereby supporting streamlined 
escalation paths and reducing manual workload a finding supported by Jiang 
and Luo (2019), who showed that automation in telecom fault classification 
improves operational throughput by 40%. Moreover, the Power BI dashboard 
interface delivers real-time visualizations that are both intuitive and responsive, 
ensuring that network analysts and field technicians can make informed decisions 
quickly. The dashboard’s usability mirrors findings from Almasi et al. (2023), 
who concluded that intelligent dashboards improve situational awareness and 
reduce operator fatigue by facilitating at-a-glance anomaly identification and 
actionable insights.

The system also supports the ISO 25010 “freedom from risk” attribute by 
minimizing human error through guided diagnostic pathways. With automated 
alert prioritization and cause suggestions, the probability of oversight or incorrect 
manual intervention is significantly lowered. These features correspond with Park 
and Kang (2024), who found that AI helps predict issues, monitor in real time, 
and make automatic decisions. This leads to safer strategies that reduce risks, 
improve efficiency, and support a safer, risk-free, and sustainable industry.

By anchoring the system’s evaluation in the ISO/IEC 25010 framework, 
this research ensures a holistic assessment that addresses both software quality 
and user-centric performance. The dual success in technical integrity and user 
satisfaction illustrates the system’s strong alignment with emerging best practices 
in AI-based telecom monitoring (Amster, 2025). Ultimately, the deployment 
of this solution across 1004 telecommunications sites confirms its capacity to 
optimize operational performance, reduce downtime, improve energy efficiency, 
and support scalable, intelligent decision-making—establishing a new benchmark 
for AI-enabled remote infrastructure management in the telecommunications 
industry.

CONCLUSIONS

The comprehensive methodology presented in this study illustrates 
the practical and theoretical potential of integrating data analytics and 
machine learning into Remote Management Systems (RMS) within the 
telecommunications domain. By leveraging an array of machine learning 
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models—including ensemble techniques such as Random Forest and Gradient 
Boosting, the margin-maximizing capabilities of Support Vector Machines 
(SVM), and the temporal sensitivity of Long Short-Term Memory (LSTM) 
networks—the system is architected to handle a wide spectrum of anomaly 
types with precision and adaptability. These models not only offer high detection 
performance but also support nuanced insights into temporal and contextual 
patterns of network faults.

To augment algorithmic diagnostics, the incorporation of pattern recognition 
methods such as K-Nearest Neighbors (KNN) and Case-Based Reasoning (CBR) 
introduces a valuable historical lens through which current anomalies can be 
contextualized and interpreted. These additions enable the system to move 
beyond mere classification and into the domain of intelligent reasoning, where 
prior events inform current decision-making processes. Preprocessing pipelines, 
including data cleansing, normalization, and feature selection, were carefully 
designed to reduce noise and imbalance in real-world telemetry datasets, while the 
use of F1-score as a central evaluation metric allowed for balanced performance 
measurement, especially in scenarios with skewed class distributions.

A distinguishing feature of this approach is the integration of a dynamic, rule-
based knowledge system that synergizes human domain expertise with machine-
learned inference. This hybrid architecture enhances diagnostic coverage, 
particularly in edge cases where conventional models might lack sufficient 
training data. By allowing for rule overrides and collaborative interpretation, the 
system ensures a degree of human-in-the-loop oversight that is both scalable and 
responsive.

Additionally, the deployment of multi-tiered validation mechanisms, 
including ensemble agreement checks and explainability modules like 
SHAP (SHapley Additive exPlanations), reinforces the trustworthiness and 
interpretability of model outputs. These tools not only empower human operators 
to understand and verify system behavior but also serve as guardrails against false 
positives and black-box misjudgments.

In summary, this research lays the groundwork for a next-generation, AI-driven 
RMS framework that is not only technically robust but also strategically aligned 
with the operational challenges of modern telecommunications infrastructure. As 
networks become increasingly complex, dynamic, and geographically distributed, 
the solutions proposed here offer a resilient, scalable, and intelligent pathway for 
maintaining performance continuity, optimizing maintenance workflows, and 
enabling real-time, data-informed decision-making. Future work may explore 
the integration of edge AI processing, federated learning for privacy-preserving 
model training, and domain-specific adaptation techniques to further enhance 
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generalizability and responsiveness across diverse telecom environments.

TRANSLATIONAL RESEARCH

This study exemplifies a strong translational research trajectory by 
moving beyond theoretical model development and demonstrating how 
intelligent analytics systems can be practically implemented within existing 
telecommunications infrastructure. The multi-model machine learning 
framework—encompassing anomaly detection, root cause analysis, and decision 
support—has direct applicability in real-world Remote Management Systems 
(RMS) across geographically distributed network sites.

The integration of ensemble learning techniques, temporal models such 
as LSTM, and diagnostic strategies like K-Nearest Neighbors and Case-Based 
Reasoning provides a concrete foundation for deploying adaptive and self-learning 
monitoring platforms. These models are not merely theoretical constructs but are 
calibrated to handle noisy, real-world telemetry data and unpredictable network 
behaviors that are common in field deployments.

Furthermore, the inclusion of a rules-based knowledge component ensures 
that the system can operate in hybrid modes, combining human expertise with 
machine inference. This directly benefits field engineers and network operators 
by offering actionable insights, reducing the cognitive load, and accelerating 
time-to-resolution during service outages or infrastructure faults.

In practical terms, the outputs of this research can be integrated into 
Network Operations Centers (NOCs) and Service Management Systems (SMS) 
via modular APIs, enabling seamless data ingestion, anomaly alerting, and 
explainable decision support. Additionally, the use of explainability tools like 
SHAP not only makes the system transparent to non-technical stakeholders but 
also facilitates regulatory compliance and internal auditing—critical requirements 
in the telecommunications industry.

The translational value is further underscored by the potential for 
customization and localization. With retraining and fine-tuning on localized 
datasets, the framework can be adapted to varying geographies, network 
configurations, and operational policies, making it scalable and applicable for 
regional telecom providers, particularly in Southeast Asia.

Ultimately, this research provides a bridge between advanced machine 
learning methodologies and their effective deployment in complex, real-world 
telecommunications environments. The approach holds significant promise for 
improving network reliability, reducing operational costs, and enhancing the 
overall efficiency of infrastructure management systems.
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